Arabidopsis SGT1b is required for defense signaling conferred by several downy mildew resistance genes.
نویسندگان
چکیده
We describe the identification of a mutant in the Arabidopsis accession Columbia (Col-0) that exhibits enhanced downy mildew (edm1) susceptibility to several Peronospora parasitica isolates, including the RPP7-diagnostic isolate Hiks1. The mutation was mapped to chromosome IV and characterized physically as a 35-kb deletion spanning seven genes. One of these genes complemented the mutant to full wild-type resistance against all of the Peronospora isolates tested. This gene (AtSGT1b) encodes a predicted protein of 39.8 kD and is an Arabidopsis ortholog of yeast SGT1, which was described originally as a key regulatory protein in centromere function and ubiquitin-mediated proteolysis. AtSGT1b contains three tetratricopeptide repeats at the N terminus followed by a bipartite chord-containing SGT domain and an SGT-specific domain at the C terminus. We discuss the role of AtSGT1b in disease resistance and its possible involvement in ubiquitin-mediated proteolysis in plants.
منابع مشابه
Downy mildew (Peronospora parasitica) resistance genes in Arabidopsis vary in functional requirements for NDR1, EDS1, NPR1 and salicylic acid accumulation.
To better understand the genetic requirements for R gene-dependent defense activation in Arabidopsis, we tested the effect of several defense response mutants on resistance specified by eight RPP genes (for resistance to Peronospora parasitica) expressed in the Col-0 background. In most cases, resistance was not suppressed by a mutation in the SAR regulatory gene NPR1 or by expression of the Na...
متن کاملThe Arabidopsis microtubule-associated protein MAP65-3 supports infection by filamentous biotrophic pathogens by down-regulating salicylic acid-dependent defenses.
The oomycete Hyaloperonospora arabidopsidis and the ascomycete Erysiphe cruciferarum are obligate biotrophic pathogens causing downy mildew and powdery mildew, respectively, on Arabidopsis. Upon infection, the filamentous pathogens induce the formation of intracellular bulbous structures called haustoria, which are required for the biotrophic lifestyle. We previously showed that the microtubule...
متن کاملThe receptor kinase IMPAIRED OOMYCETE SUSCEPTIBILITY1 attenuates abscisic acid responses in Arabidopsis.
In plants, membrane-bound receptor kinases are essential for developmental processes, immune responses to pathogens and the establishment of symbiosis. We previously identified the Arabidopsis (Arabidopsis thaliana) receptor kinase IMPAIRED OOMYCETE SUSCEPTIBILITY1 (IOS1) as required for successful infection with the downy mildew pathogen Hyaloperonospora arabidopsidis. We report here that IOS1...
متن کاملArabidopsis DMR6 encodes a putative 2OG-Fe(II) oxygenase that is defense-associated but required for susceptibility to downy mildew.
The Arabidopsis mutant downy mildew resistant 6 (dmr6) carries a recessive mutation that results in the loss of susceptibility to Hyaloperonospora parasitica. Here we describe the map-based cloning of DMR6 (At5g24530), which was found to encode a 2-oxoglutarate (2OG)-Fe(II) oxygenase of unknown function. DMR6 transcription is locally induced during infections with both compatible and incompatib...
متن کاملIdentification of arabidopsis loci required for susceptibility to the downy mildew pathogen Hyaloperonospora parasitica.
Plants are susceptible to a limited number of pathogens. Most infections fail due to active defense or absence of compatibility. Many components of the plant's surveillance system and defense arsenal have been identified in the last decades. However, knowledge is limited on compatibility; in particular, the role of plant factors in the infection process. To gain insight into these processes, we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 14 5 شماره
صفحات -
تاریخ انتشار 2002